Algebraic Term

Definition

A term that contains at least a literal number to represent a quantity is called an algebraic term.

The algebraic terms are single terms and can be formed by either a number or at least a literal or the involvement of both in various mathematical forms such as multiplication and division.

Formation

The algebraic terms are formed in four different ways possibly to represent quantities mathematically.

01

Numbers

Every number is a symbol and used to represent a particular quantity. Hence, every real number is a basic example to algebraic terms.

Examples

$0$, $3$, $-8$, $\dfrac{4}{7}$, $-\dfrac{13}{6}$, $0.56$, $-3.15$, $\sqrt{13}$, $-\dfrac{2}{\sqrt[\displaystyle 3]{9}}$, $\ldots$

02

Literals

Every symbol can be used to represent a quantity. Therefore, the symbols (can be either constants or variables) are also best examples of algebraic terms.

Examples

$a$, $p$, $\theta$, $\delta$, $c_o$, $\pi$, $\ldots$

03

Product form

Numbers and symbols involve in multiplication to form single terms as their product to represent quantities. So, every algebraic term can be formed in product form by a number and at least one symbol.

Examples

$2x$, $-p^{\displaystyle 2}$, $7ab$, $-6m^{\displaystyle 2}n$, $0.5rs^{\displaystyle 2}t^{\displaystyle 3}$, $\Bigg(\dfrac{3}{7}\Bigg)cd^{\displaystyle 2}e^{\displaystyle 3}f^{\displaystyle 4}$, $\ldots$

04

Quotient form

Numbers and symbols are also involved in division to form single terms as their quotient. Therefore, every algebraic term can be formed in quotient form by a number and at least one symbol.

Examples

$\dfrac{1}{d}$, $-\dfrac{a}{2b}$ , $\dfrac{p^{\displaystyle 2}}{q}$, $-\dfrac{m^{\displaystyle 4}}{n^{\displaystyle 3}r^{\displaystyle 6}}$, $\ldots$

Save (or) Share
Follow us
Email subscription
Copyright © 2012 - 2017 Math Doubts, All Rights Reserved