$x$, $y$, $z$ and $p$ are four literals. The literal $p$ is used as a base of three multiplying functions, the reciprocal of subtraction of any two of remaining three literals with sequence form becomes an exponent to each base of the each multiplying exponential function. Similarly, another reciprocal of subtraction of any two from three becomes the whole power of each exponential term. It is also followed a sequence.

The value of entire multiplying function is required to find in this problem.

${\Bigg(\large p^{\normalsize \dfrac{1}{x-y}}\Bigg)}^{\dfrac{1}{x-z}}$ $\times$ ${\Bigg(\large p^{\normalsize \dfrac{1}{y-z}}\Bigg)}^{\dfrac{1}{y-x}}$ $\times$ ${\Bigg(\large p^{\normalsize \dfrac{1}{z-x}}\Bigg)}^{\dfrac{1}{z-y}}$

01

Each exponential function that contains a whole power can be simplified by applying the power rule of exponent of an exponential function formula.

$=\,\,$ $\large p^{\normalsize \Bigg[\dfrac{1}{x-y} \times \dfrac{1}{x-z}\Bigg]}$ $\times$ $\large p^{\normalsize \Bigg[\dfrac{1}{y-z} \times \dfrac{1}{y-x}\Bigg]}$ $\times$ $\large p^{\normalsize \Bigg[\dfrac{1}{z-x} \times \dfrac{1}{z-y}}\Bigg]$

$=\,\,$ $\large p^{\normalsize \Bigg[\dfrac{1}{(x-y)(x-z)}\Bigg]}$ $\times$ $\large p^{\normalsize \Bigg[\dfrac{1}{(y-z)(y-x)}\Bigg]}$ $\times$ $\large p^{\normalsize \Bigg[\dfrac{1}{(z-x)(z-y)}\Bigg]}$

02

The three multiplying exponential functions are having same base. So, they can be merged as a single multiplying exponential function by using product law of exponents.

$=\,\,$ $\large p^{\normalsize \dfrac{1}{(x-y)(x-z)} \large \,+\, \normalsize \dfrac{1}{(y-z)(y-x)} \large \,+\, \normalsize \dfrac{1}{(z-x)(z-y)}}$

$=\,\,$ $\large p^{\normalsize \dfrac{1}{(x-y)[-(z-x)]} \large \,+\, \normalsize \dfrac{1}{(y-z)[-(x-y)]} \large \,+\, \normalsize \dfrac{1}{(z-x)[-(y-z)]}}$

$=\,\,$ $\large p^{\normalsize \dfrac{-1}{(x-y)(z-x)} \large \,+\, \normalsize \dfrac{-1}{(y-z)(x-y)} \large \,+\, \normalsize \dfrac{-1}{(z-x)(y-z)}}$

$=\,\,$ $\large p^{\normalsize \dfrac{-y+z-z+x-x+y}{(x-y)(y-z)(z-x)}}$

$=\,\,$ $\require{cancel} \large p^{\normalsize \dfrac{-\cancel{y}+\cancel{z}-\cancel{z}+\cancel{x}-\cancel{x}+\cancel{y}}{(x-y)(y-z)(z-x)}}$

$=\,\,$ $\large p^{\normalsize \dfrac{0}{(x-y)(y-z)(z-x)}}$

03

According to zero power rule, the value of any exponential function that contains $0$ as power, is equal to $1$.

$=\,\,$ $\large p^{\normalsize 0}$

$=\,\,$ $1$

Therefore, the value of entire function is one and it is the required solution for this exponent problem in mathematics.

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.