$\log_{3} (\log x^3) -\log_{3} (\log x)$

Two logarithmic terms are formed an expression in subtraction form and they contain $3$ as a base commonly but each logarithmic function contains another logarithmic function internally. The value of subtraction of them is required to find in this logarithm problem.

The logarithmic problem can be solved in two different methods possibly.

$\log_{3} (\log x^3) -\log_{3} (\log x)$

The logarithmic functions have same base and it is $3$. One logarithmic function is subtracted from another function and they can be simplified by applying quotient rule of logarithms.

$=\,\,$ $\log_{3} \Bigg[\dfrac{\log x^3}{\log x}\Bigg]$

Consider $\log x^3$ term and it is a logarithm of an exponential term. It can be expressed in another form by using power law of logarithm.

$=\,\,$ $\log_{3} \Bigg[\dfrac{3 \times \log x}{\log x}\Bigg]$

$=\,\,$ $\log_{3} \Bigg[3 \times \dfrac{\log x}{\log x}\Bigg]$

$=\,\,$ $\require{cancel} \log_{3} \Bigg[3 \times \dfrac{\cancel{\log x}}{\cancel{\log x}}\Bigg]$

$=\,\,$ $\log_{3} (3 \times 1)$

$=\,\,$ $\log_{3} 3$

The logarithm of a number to same number is always one. Therefore, the logarithm of $3$ to $3$ is one.

$\therefore \,\,\,\,\,\, \log_{3} (\log x^3) -\log_{3} (\log x) = 1$

It can also be solved in another method of the logarithms.

$\log_{3} (\log x^3) -\log_{3} (\log x)$

The first logarithmic term contains another logarithm term but it contains an exponential term. Simplify it by using power rule formula of logarithms.

$\log_{3} (3 \times \log x) -\log_{3} (\log x)$

Inside the first logarithm term, two numbers are multiplying each other and it represents the product rule of logarithm. Use it and split the first logarithmic function as the sum of two logarithmic terms.

$=\,\,$ $\log_{3} 3 + \log_{3} (\log x) -\log_{3} (\log x)$

$=\,\,$ $\require{cancel} \log_{3} 3 + \cancel{\log_{3} (\log x)} -\cancel{\log_{3} (\log x)}$

$=\,\,$ $\log_{3} 3$

The value of logarithm of $3$ to $3$ is one.

$\therefore \,\,\,\,\,\, \log_{3} (\log x^3) -\log_{3} (\log x) = 1$

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.