Three mathematical statements are given to find the values of $x$ and $y$ in this logarithm problem.

$(1) \,\,\,\,\,\,$ $z^3 = \sqrt{36^5}$

$(2) \,\,\,\,\,\,$ $x = \log_{6} (z) -\dfrac{2}{3}$

$(2) \,\,\,\,\,\,$ $y = x^{-5}$

The first statement expresses the value of $z$ in terms of a radical having an exponential term as its radicand. The second statement is useful to find the value of $x$ by substituting the value of $z$ in it. Finally, the third statement is useful to find the value $y$ by substituting the value of $x$ in it.

Solve the first statement and find the value of $z$.

$z^3 = \sqrt{36^5}$

$\implies z^3 = \sqrt{{(6^2)}^5}$

Apply the power rule of an exponential term to simplify this expression.

$\implies z^3 = \sqrt{6^{2 \times 5}}$

$\implies z^3 = \sqrt{6^{5 \times 2}}$

$\implies z^3 = \sqrt{{(6^5)}^2}$

$\implies z^3 = 6^5$

Take cube root both sides to find the value of $z$.

$\implies \sqrt[\displaystyle 3]{z^3} = \sqrt[\displaystyle 3]{6^5}$

$\therefore \,\,\,\,\,\, z = {(6)}^{\dfrac{5}{3}}$

Now, substitute the value of $z$ in the second statement to obtain the value of $x$.

$x = \log_{6} (z) -\dfrac{2}{3}$

$\implies x = \log_{6} {(6)}^{\dfrac{5}{3}} -\dfrac{2}{3}$

Use the power law of logarithm of an exponential term to simplify the equation.

$\implies x = \dfrac{5}{3} \log_{6} 6 -\dfrac{2}{3}$

According to logarithm of base rule, the logarithm of a number to same number is one.

$\implies x = \dfrac{5}{3} \times 1 -\dfrac{2}{3}$

$\implies x = \dfrac{5}{3}-\dfrac{2}{3}$

$\implies x = \dfrac{5-2}{3}$

$\implies x = \dfrac{3}{3}$

$\therefore \,\,\,\,\,\, x = 1$

Now substitute the value of $x$ in third algebraic equation to get the value of $y$.

$y = x^{-5}$

$\implies y = {(1)}^{-5}$

$\therefore \,\,\,\,\,\, y = 1$

Therefore, it is derived that value of $x$ is equal to the value of $y$ and it is $1$. It is written as $x = y = 1$

Latest Math Topics

Latest Math Problems

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved