Math Doubts

Evaluate $c^2 -a^2(1 + m^2)$ if roots are equal for the quadratic equation $(1+m^2)x^2$ $+$ $2cmx$ $+$ $(c^2 \,–\, a^2) = 0$

$(1+m^2)x^2 + 2cmx + (c^2 \,–\, a^2) = 0$ is a quadratic equation and the roots of this equation are same.

01

Rule of Equal Roots of Quadratic equation

Due to the equal roots of the quadratic equation, the discriminant of the quadratic equation is zero. For example, $ax^2+bx+c = 0$ is a quadratic equation in general form. The discriminant is $b^2-4ac$ and it is zero due to equal roots.

$b^2 \,-\, 4ac = 0$

02

Evaluation of Discriminant

Compare the quadratic equation $(1+m^2)x^2 + 2cmx + (c^2 \,–\, a^2) = 0$ with standard form quadratic equation $ax^2+bx+c = 0$.

$a = 1+m^2$, $b = 2cm$ and $c = (c^2 \,–\, a^2)$. Substitute these values in discriminate of the quadratic equation.

$b^2 \,-\, 4ac = 0$

$\implies {(2cm)}^2 \,-\, 4 \times (1+m^2) \times (c^2 \,–\, a^2) = 0$

$\implies 4c^2m^2 \,-\, 4 \times (c^2 \,–\, a^2 + m^2 c^2 \,–\, m^2 a^2) = 0$

$\implies 4c^2m^2 \,-\, 4c^2 + 4a^2 \,-\, 4m^2c^2 + 4m^2a^2 = 0$

$\implies 4c^2m^2 \,-\, 4c^2 + 4a^2 \,-\, 4c^2m^2 + 4m^2a^2 = 0$

$\require{cancel} \implies \cancel{4c^2m^2} \,-\, 4c^2 + 4a^2 \,-\, \cancel{4c^2m^2} + 4m^2a^2 = 0$

$\implies \,-\, 4c^2 + 4a^2 + 4m^2a^2 = 0$

$\implies 4a^2 + 4m^2a^2 = 4c^2$

$\implies 4c^2 = 4a^2 + 4m^2a^2$

$\implies 4c^2 = 4a^2(1 + m^2)$

$\require{cancel} \implies \cancel{4}c^2 = \cancel{4}a^2(1 + m^2)$

$\implies c^2 = a^2(1 + m^2)$

$\therefore \,\,\,\,\,\, c^2 -a^2(1 + m^2) = 0$



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more