$ax^2+bx+c = 0$ is a quadratic equation in general form. One root is twice the other root.

01

Assume, $\alpha$ and $\beta$ are two roots of the quadratic equation. Summation and product of the both roots are,

$\alpha + \beta = -\dfrac{b}{a}$

$\alpha \beta = \dfrac{c}{a}$

02

It is given that one root is twice the second root. So, $\beta = 2 \alpha$. Now, eliminate $\beta$ from both roots relations by using this condition.

$\alpha + \beta = -\dfrac{b}{a}$

$\implies \alpha + 2\alpha = -\dfrac{b}{a}$

$\implies 3\alpha = -\dfrac{b}{a}$

$\therefore \,\, \alpha = -\dfrac{b}{3a}$

$\alpha \beta = \dfrac{c}{a}$

$\implies \alpha \times 2 \alpha = \dfrac{c}{a}$

$\implies 2 \alpha^2 = \dfrac{c}{a}$

$\therefore \,\, \alpha^2 = \dfrac{c}{2a}$

03

Now, replace the value of $\alpha$, obtained from the summation of the roots of the quadratic equation.

$\implies {\Bigg(-\dfrac{b}{3a}\Bigg)}^2 = \dfrac{c}{2a}$

$\implies \dfrac{b^2}{9a^2} = \dfrac{c}{2a}$

$\implies 2a \times b^2 = 9a^2 \times c$

$\implies 2ab^2 = 9a^2c$

$\require{cancel} \implies 2\cancel{a}b^2 = 9\cancel{a^2}c$

$\implies 2b^2 = 9ac$

$\therefore \,\,\,\,\,\, \dfrac{b^2}{ac} = \dfrac{9}{2} = 4.5$

Therefore, it is the required solution for this quadratic equation.

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.