Math Doubts

Find $a \cos 2\alpha$ $+$ $b\sin 2\alpha$ if $\dfrac{\cos \alpha}{a} = \dfrac{\sin \alpha}{b}$

$\alpha$ is an angle of a right angle triangle. The relation between trigonometric functions $\cos \alpha$ and $\sin \alpha$ is expressed in a ratio in terms of literal numbers $a$ and $b$.

The relation is expressed in mathematical form as $\dfrac{\cos \alpha}{a} = \dfrac{\sin \alpha}{b}$

It is useful to express $\cos \alpha$ in terms of $\sin \alpha$ and vice versa in this problem to find the value of $a \cos 2\alpha + b\sin 2\alpha$

The problem can be solved in trigonometry in two methods by using relation between both trigonometric functions.

Method: 1

Step: 1

According to double angle trigonometric identities,

$(1) \,\,\,\,\,\,$ $\cos 2\alpha = 2\cos^2 \alpha -1$

$(2) \,\,\,\,\,\,$ $\sin 2\alpha = 2\sin \alpha \cos \alpha$

Now, expand $\cos 2\alpha$ and $\sin 2\alpha$ in the trigonometric expression.

$= a \times (2\cos^2 \alpha -1)$ $+$ $b \times (2\sin \alpha \cos \alpha)$

$= 2a\cos^2 \alpha -a$ $+$ $2b\sin \alpha \cos \alpha$

Step: 2

If $\dfrac{\cos \alpha}{a} = \dfrac{\sin \alpha}{b}$, then $\cos \alpha = \Bigg[\dfrac{a}{b}\Bigg]\sin \alpha$. Replace $\cos \alpha$ by its value in the second term of the expression.

$= 2a\cos^2 \alpha -a$ $+$ $2b\sin \alpha \times \Bigg[\dfrac{a}{b}\Bigg]\sin \alpha$

$= 2a\cos^2 \alpha -a$ $+$ $2b\Bigg[\dfrac{a}{b}\Bigg]\sin \alpha \sin \alpha$

$= 2a\cos^2 \alpha -a$ $+$ $2a\Bigg[\dfrac{b}{b}\Bigg]\sin^2 \alpha$

$= 2a\cos^2 \alpha -a$ $+$ $\require{cancel} 2a\Bigg[\dfrac{\cancel{b}}{\cancel{b}}\Bigg]\sin^2 \alpha$

$= 2a\cos^2 \alpha -a$ $+$ $2a\sin^2 \alpha$

$= 2a\cos^2 \alpha + 2a\sin^2 \alpha -a$

Step: 3

Take $2a$ common and proceed to the simplification.

$= 2a(\cos^2 \alpha + \sin^2 \alpha)$ $-a$

According to Pythagorean trigonometric identity, the sum of squares of sine and cosine of an angle is one.

$= 2a(1)$ $-a$

$= 2a-a$

$\therefore \,\,\,\,\,\, a \cos 2\alpha$ $+$ $b\sin 2\alpha = a$

It is the required solution for this trigonometric problem.

Method: 2

Step: 1

As per the double angle trigonometric identities,

$(1) \,\,\,\,\,\,$ $\cos 2\alpha = 1-2\sin^2 \alpha$

$(2) \,\,\,\,\,\,$ $\sin 2\alpha = 2\sin \alpha \cos \alpha$

Expand sine and cosine of double angle and replace them in the trigonometric expression.

$= a(1-2\sin^2 \alpha) + b(2 \sin \alpha \cos \alpha)$

$= a(1-2\sin^2 \alpha) + 2b \sin \alpha \cos \alpha$

$= a(1-2\sin^2 \alpha) + 2\sin \alpha (b\cos \alpha)$

Step: 2

If $\dfrac{\cos \alpha}{a} = \dfrac{\sin \alpha}{b}$, then $b\cos \alpha = a\sin \alpha$.

$= a(1-2\sin^2 \alpha) + 2\sin \alpha (a\sin \alpha)$

$= a-2a\sin^2 \alpha + 2a\sin \alpha \times \sin \alpha)$

$= a-2a\sin^2 \alpha + 2a\sin^2 \alpha$

$\require{cancel} = a-\cancel{2a\sin^2 \alpha} + \cancel{2a\sin^2 \alpha}$

$\therefore \,\,\,\,\,\, a \cos 2\alpha$ $+$ $b\sin 2\alpha = a$

Latest Math Topics
Latest Math Problems
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more