Math Doubts

Proof of Double Power Law of Logarithms

Formula

$\log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

The double power rule of logarithms is a mathematical identity which is used to find the value of logarithm of a quantity by expressing quantity and base quantity of logarithmic term in exponential notation.

Proof

$p$ and $q$ are two quantities and assume they are expressed in exponential form as $m^{\displaystyle x}$ and $n^{\displaystyle y}$ respectively.

$p \,=\, m^{\displaystyle x}$ and $q \,=\, n^{\displaystyle y}$

The value of logarithm of $p$ to $q$ is written as $\log_{q}{p}$ in mathematics. Actually, $p \,=\, m^{\displaystyle x}$ and $q \,=\, n^{\displaystyle y}$.

Therefore, $\log_{q}{p}$ $\,=\,$ $\log_{n^y}{m^{\displaystyle x}}$

Find Log of quantity in exponential form

Take $t \,=\, b^y$ and the logarithmic function can be written as follows.

$\implies \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $\log_{t}{m^{\displaystyle x}}$

According to Power law of Logarithms, the log of a quantity in exponential form to a base is equal to the product of exponent and log of the base of exponential term to same base.

$\implies \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{t}{m}$

Now, replace the actual value of the base $t$.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{b^y}{m}$

Find Log of quantity to base in exponential form

It is time to find the value of log of $m$ to a base which is expressed in exponential form as $b^{y}$. It can be done by the base power rule of logarithm.

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m}$ $\,=\,$ $\Big(\dfrac{1}{y}\Big)\log_{b}{m}$

Combine results of both steps

Now, recollect the results of above two steps once.

$(1) \,\,\,\,\,\,$ $\log_{b^y}{m^{\displaystyle x}}$ $\,=\,$ $x\log_{b^y}{m}$

$(2) \,\,\,\,\,\,$ $\log_{b^y}{m}$ $\,=\,$ $\Big(\dfrac{1}{y}\Big)\log_{b}{m}$

Now, combine both results to a log property to find the value of log of a quantity in exponential form to base in exponential form.

$\implies \log_{b^y}{m^x}$ $\,=\,$ $x \times \log_{b^y}{m}$

$\implies \log_{b^y}{m^x}$ $\,=\,$ $x \times \Big(\dfrac{1}{y}\Big)\log_{b}{m}$

$\,\,\, \therefore \,\,\,\,\,\, \log_{b^y}{m^x}$ $\,=\,$ $\Big(\dfrac{x}{y}\Big)\log_{b}{m}$

Thus, the double power rule of logarithms is derived in algebraic form and it can be used as an identity in mathematics.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved