A term that contains a logarithmic expression is called a logarithmic term.

Any quantity can be expressed in logarithmic form. If a quantity is expression in the form a term and it contains a logarithmic form expression, then the term is called a logarithmic term.

For example, $3$ is a number. It can be expression in logarithmic form.

$3 \,=\, \log_{2}{8}$

Mathematically, the term $\log_{2}{8}$ can be written instead of $3$.

Basically, logarithm of $8$ to the base $2$ is a term and it represents a number. Moreover, the term is in the logarithmic form. Hence, the term $\log_{2}{8}$ is called a logarithmic term.

Logarithmic terms are formed in three different types possibly.

01

Only a single logarithmic term represents the quantity completely.

$(1) \,\,\,\,\,\,$ $\log_{3}{10}$

$(2) \,\,\,\,\,\,$ ${(\log_{6}{1898})}^4$

$(3) \,\,\,\,\,\,$ $\log_{e}{91}$

$(4) \,\,\,\,\,\,$ $\log_{a}{b^2}$

$(5) \,\,\,\,\,\,$ $\log_{xy}{(1+xyz)}$

02

The terms are also formed by the product of numbers and logarithmic form expressions. Due to the involvement of the logarithmic form expressions, the terms are called logarithmic terms.

$(1) \,\,\,\,\,\,$ $5\log_{2}{7}$

$(2) \,\,\,\,\,\,$ $-8{(\log_{4}{190})}^2$

$(3) \,\,\,\,\,\,$ $0.78\log_{e}{11211}$

$(4) \,\,\,\,\,\,$ $b\log_{c}{ac^3}$

$(5) \,\,\,\,\,\,$ $(2+x^2)\log_{z}{(1-x^2)}$

03

The terms are also formed in division form to represent quantities by their quotients. If a term contains, a logarithmic form expression, then it is known as a logarithmic term.

$(1) \,\,\,\,\,\,$ $\dfrac{-7}{\log_{5}{3}}$

$(2) \,\,\,\,\,\,$ $\dfrac{{(\log_{12}{50})}^7}{10}$

$(3) \,\,\,\,\,\,$ $\dfrac{5}{0.9\log_{e}{(7g)}}$

$(4) \,\,\,\,\,\,$ $\dfrac{\log_{10}{(xyz)}}{z^2}$

$(5) \,\,\,\,\,\,$ $\dfrac{1-b}{\log_{b}{(1-ab^8)}}$

List of most recently solved mathematics problems.

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Jun 20, 2018

Differentiation

Learn how to find derivative of $\sin{(x^2)}$ with respect to $x$.

Jun 19, 2018

Limit (Calculus)

Find $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{x-\sin{x}}{x^3}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.