Math Doubts

Power Laws of Logarithms

In logarithms, there are three fundamental power rules and here is the list of properties which represent formulas of power of the logarithms in algebraic form with proofs.

1.

Log of Exponential Term to a number

The logarithm of an exponential function to a number is equal to the product of the exponent of the exponential term and logarithm of base of the exponential term to the number.

$\large \log_{b} m^x = x \log_{b} m$

2.

Log of a number to Exponential Term

The logarithm of a number to an exponential function is equal to the product of reciprocal of the exponent of the base and logarithm of the number to base of the exponential term.

$\large \log_{b^y} m = \Big(\dfrac{1}{y}\Big) \log_{b} m$

3.

Log of Exponential term to another

The logarithm of an exponential function to another exponential term is equal to the product of the quotient of exponents of number by the base and logarithm of the base of the number to base of the base exponential term.

$\large \log_{b^y} m^x = \Big(\dfrac{x}{y}\Big) \log_{b} m$



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more