Inverse hyperbolic functions are six types and the differentiation rules of each inverse hyperbolic function with respect to $x$ is listed here along with its proof in calculus mathematics.

01

$\dfrac{d}{dx} \, \sinh^{-1} x = \dfrac{1}{\sqrt{1+x^2}}$

02

$\dfrac{d}{dx} \, \cosh^{-1} x = \dfrac{1}{\sqrt{x^2 -1}}$

03

$\dfrac{d}{dx} \, \tanh^{-1} x = \dfrac{1}{1-x^2}$

The derivative of inverse hyperbolic tangent function with respect to $x$ is equal to $1$ divided by $1$ minus $x$ squared.

04

$\dfrac{d}{dx} \, \coth^{-1} x = \dfrac{1}{1-x^2}$

05

$\dfrac{d}{dx} \, \operatorname{sech}^{-1} x = \dfrac{-1}{|x| \sqrt{1 -x^2}}$

06

$\dfrac{d}{dx} \, \operatorname{csch}^{-1} x = \dfrac{-1}{|x| \sqrt{x^2 +1}}$

List of most recently solved mathematics problems.

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Jun 20, 2018

Differentiation

Learn how to find derivative of $\sin{(x^2)}$ with respect to $x$.

Jun 19, 2018

Limit (Calculus)

Find $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{x-\sin{x}}{x^3}$

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.